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Abstract
This study describes a deep zero-shot transfer learning model (DZTLM) for predict-
ing mild cognitive impairment (MCI) in patients with Alzheimer’s disease (AD). 
The proposed DZTLM combines ResNet and deep subdomain adaptation network 
(DsAN) blocks with a simple data augmentation and transfer technique, Elastic-
Mixup. We test the DZTLM using 3D gray matter images segregated from struc-
tural MRI as input. Ablation experiments are conducted to evaluate the proposed 
model and compare it with existing approaches. Experiments demonstrate that the 
DsAN network coordinating Elastic-Mixup enhances the accuracy of MCI-AD pre-
diction by more than 18% compared with a standard 3D ResNet50 classifier. The 
Elastic-Mixup technique contributes more than 16% to this increase in prediction 
accuracy. Elastic-Mixup also enhances the sensitivity of recognition for stable MCI. 
When labeled samples are scarce, the unsupervised DZTLM outperforms a semi-
supervised transfer learning model. The DZTLM achieves comparable outcomes to 
existing models despite the absence of tagged MRI data.
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1 Introduction

Computer-aided diagnosis techniques (CAD) for predicting moderate cognitive 
impairment (MCI) advancing to Alzheimer’s disease (AD) have emerged as an 
important topic in intelligent healthcare [1]. AD is a degenerative brain ailment 
with complex pathophysiology that is currently preventive but incurable [2]. Peo-
ple with late-stage AD exhibit clinical symptoms such as progressive memory 
loss and subsequent dementia, as well as neuropathological deposition of senile 
plaques and neurofibrillary tangles [3]. As a result, CAD for late-stage AD using 
behavioral scales and related biomarkers is simple and accurate, reaching above 
99 percent diagnosis accuracy [4, 5], whereas CAD for MCI is challenging. More 
importantly, by the time MCI reaches the late stage, most neurons are irrevers-
ibly dead. Thus, the most efficient method for delaying AD is to enhance early 
diagnosis performance. Currently, diagnostic models for predicting MCI progres-
sion are largely based on developing machine learning [6–8] and deep neural net-
works. Deep diagnostic models, in particular, have received considerable interest 
because of their self-training ability and strong performance.

Numerous medical image modalities are currently being employed in deep 
diagnostic models of MCI [9]. Among them, magnetic resonance imaging (MRI) 
and positron emission tomography (PET) are widely used for brain imaging, 
providing vital information on the brain’s structure and functions  [10]. Because 
MRI scans are noninvasive, safe, and affordable, they are often chosen over PET 
scans. More crucially, several studies [11, 12] have established that MRI cues are 
critical in categorizing MCI as progressive MCI (pMCI) or stable MCI (sMCI). 
However, most MRI-based models focus on supervised learning using labeled 
training data. There are always challenges to achieving good results for MCI pre-
diction tasks. MRI enables the assessment and monitoring of changes in the size 
of certain brain areas. In the early stage of AD, prior to obvious clinical signs, 
MRI scans aid in detecting the structural atrophy caused by cellular damage, 
axonal degeneration, or synaptic damage. However, the MRI features that distin-
guish MCI subtypes have become obscured. As an illustration, Fig. 1 compares 
the region of interest (ROI) distributions in AD and normal control (NC) cases 
vs.  sMCI and pMCI using t-SNE. The distinction between sMCI and pMCI is 
more uncertain than the distinction between AD and NC. Additionally, because 
compiling a trustworthy dataset of well-labeled MCI images is more challenging, 
the MCI data scale is smaller than that of AD and NC data [13]. Thus, advanced 
models and procedures should focus on resolving the dataset issues. There are 
always challenges to improving MCI diagnosis performance.

To address these issues and the lack of research on zero-shot learning, this 
study develops a deep zero-shot transfer learning model (DZTLM) for MCI con-
version prediction. We show that this model works well, even without credible 
MCI samples. The unique contributions of this study are listed below. (1) The 
proposed DZTLM is the first to combine a deep subdomain adaptation network 
(DsAN) [14] and 3D ResNet to diagnose MCI conversion. The network essen-
tially self-learns the relationship between the original domain and the target 
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subdomains via a simple and effective mechanism for aligning the multiple net-
work levels. This produces more consistent migration between subdomains on 
the feature layer. (2) A simple and improved version of Mixup, Elastic-Mixup, is 
designed to augment and transfer samples between subdomains simultaneously. 
(3) Rather than relying entirely on either the sample migration strategy or fea-
ture migration model, we combine them. (4) Comparing the effects of the model 
structure and data strategy on MCI diagnosis performance clearly shows that 
the data strategy makes a greater contribution. The effectiveness of our strategy 
without MCI labeling is comparable to that of previous approaches in identifying 
sMCI (p>5%) as a precursor to MCI detection.

2  Related work

Using medical imaging data, breakthroughs in machine learning [6, 8, 15], deep 
learning models [16–18], and computational frameworks [19–21] have resulted 
in significant advancements in MCI conversion prediction research. Random sub-
set feature selection, minimum redundancy maximum correlation, and sparse line 
regression feature selection based on stationary selection have been used [22] to 
select discriminative features in an iterative combination of MRI and network meas-
urements in a support vector machine (SVM) classifier. The authors of [23] used a 
novel dynamic morphological feature and improved parameters to complete feature 
selection, and then classified the disease using SVM. Reference [24] describes the 
use of MRI to determine the thickness and volume of 66 unique brain areas and 
the application of particle swarm optimization to choose and construct new feature 
vectors, eventually producing a fusion classifier combining Bayesian, SVM, and 
K-nearest neighbor algorithms. Reference [25] introduces the hippocampal tex-
ture and value as input characteristics for an SVM classifier, while [26] aggregates 
the structural characteristics of the most discriminative ROIs to create a thorough 
assessment of brain deterioration using an ensemble learning methodology. In [26], 

Fig. 1  t-SNE visualizations of the ROIs in AD and NC datasets vs.  MCI datasets. ROIs—Regions of 
interest; AD–Alzheimer’s disease; NC—normal control; sMCI—stable mild cognitive impairment; 
pMCI—progressive mild cognitive impairment
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a novel Bayesian latent space model is established to exploit the spatial information 
contained in the cortical surface thickness.

Based on the original MRI, 2D deep models can be constructed using prior 
knowledge of AD [23, 27], and relatively efficient deep 3D convolutional neural 
network (CNN) diagnostic models can also be developed [14, 28]. Along with the 
aforementioned classic machine learning models, deep models for predicting MCI 
changes have become widespread over the last decade. These models employ itera-
tively trained deep neural networks to extract meaningful information from high-
dimensional medical images. For example, deep models have been established using 
CNNs to extract image features and integrated with SVM classifiers [29, 30]. The 
multi-view separable pyramid network [31] learns representations from PET scans’ 
axial, coronal, and sagittal perspectives to provide complementary information that 
is subsequently merged to make joint judgments. Reference [32] reports a Wasser-
stein–generative adversarial network (GAN) model that takes a single coronal slice 
from a patient’s baseline T1 scan and generates synthetically aged brain pictures. 
Reference [33] describes how highly informative slices and gray matter can be 
extracted using entropy and EICA, leading to the creation of a CNN model based on 
inception blocks. In [34], the authors develop a modified version of the 3D ResNet 
framework with an age-corrected architecture.

Transfer learning techniques are effective in overcoming the overfitting problem 
associated with relatively complex models when the number of available direct train-
ing samples is limited, and they are gradually being applied to solve medical image-
related tasks [35]. However, these novel strategies are mainly concerned with sample 
or feature changes. Therefore, the authors of [36, 37] placed a premium on sample 
space adaptation; for example, [37] used an unsupervised optimization method to 
weight the sample space instances according to their age and gender. Various studies 
[38–41] have used adaptive feature learning to predict early AD progression with 
NC auxiliary data. For example, [38] used the GM tissue volume from 93 ROIs in 
the auxiliary target domains (i.e., AD and NC), normalized by the total intracranial 
volume (estimated as the sum of the GM, WM, and CSF volumes in all ROIs), to 
migrate a feature for a given subject to the MCI target domain. References [42–44] 
discuss how several layers of the deep network can be fine-tuned to transfer the fea-
ture space between domains. The research outlined in [45] uses fMRI to develop a 
deep adaptive framework that is learned from the source to eliminate noise in the 
target labels. In addition, [44, 46] report on frozen features collected from ImageNet 
to create a fine-tuned convolutional network architecture. The VGG architecture was 
found to outperform other state-of-the-art architectures. Mehmood et al. [44] trained 
a 2D VGG network on ImageNet using augmentation techniques. ResNet29, created 
by Jinhyeong et al. [47], works by shrinking and shortening neurons trained on AD 
and NC data. Anees et al. [48] developed a modified version of ResNet trained on 
AD and NC, whereas [49] used convolutional autoencoders (CAEs) for classification 
problems involving AD vs. NC, with transfer learning applied to solve the MCI-AD 
prediction problem. A 2018 paper [50] presented a domain transfer learning strategy 
for structural MRI and diffusion tensor imaging modalities. The method begins with 
a model that has been pretrained on structural MRI data, followed by training on 
average diffusivity data. Unfortunately, few researchers [43, 51, 52] have discussed 
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zero-shot transfer learning approaches for MCI conversion prediction, which is a 
form of unsupervised learning without any labeled target samples. In a recent paper 
[43], a sequential CNN was constructed for MCI classification to extract the total 
weights from NC-AD data.

Table 1 lists various existing models, datasets, training techniques, and classifiers. 
Generally, the MCI-AD prediction problem requires advanced and novel techniques. 
Supervised learning models are highly dependent on the quality and quantity of the 
training data, and this is particularly true when dealing with MCI. Semi-supervised 
learning models based on transfer learning are gaining traction as a means of circum-
venting the data size constraint. However, most contemporary deep transfer learning 
techniques require fine-tuning to transfer features, but this is still constrained by the 
characteristics of the labeled MCI data. To the best of our knowledge, there have been 

Table 1  Comparison with studies for MCI conversion prediction

a Note: SL, Supervised learning; SSL, Semisupervised learning; USL, Unsupervised learning

References Learning
approach

Modality Input Classifer

Guo et al. [53] SL MRI cortical SVM
Sørensen et al. [24] SL MRI hippocampal SVM
Dai et al. [26] SL MRI cortical Bayes
Varatharajah et al. [54] SL FDG-PET

Genetic
CSF
MRI

ROI SVM, MKL

Popuri et al. [25] SL sMRI ROI multiple classifiers
Zhang et al. [22] SL MRI cortical SVM
Shen et al. [29] SL sMRI GM SVM+CNN
Basheera et al. [33] SL sMRI GM slices CNN with inception blocks
Pan et al.[31] SL PET Slices Pyramid Network
Wegmayr et al. [32] SL MRI One coronal slice Wasserstein-GAN
Pan et al. [55] SL sMRI slices CNN
Aderghal et al. [50] SSL DTI sMRI a Hippocampal slice 2DCNN
Naz et al. [46] SSL MRI Whole slices VGG
prakash et al. [41] SSL MRI cortical 3D Inception
Atif et al. [44] SSL MRI the gray matter 2D VGG
Jinhyeong et al. [47] SSL MRI Grey matter Assembled 2D CNN
Anees et al. [48] SSL MRI Whole brain 3D ResNet29
Ohet al. [49] SSL MRI Grey matter MRI3D 

modified ResNet
Loris et al. [56] SSL MRI Whole brain MR 3D ICAE(Tl)I
Cheng et al. [38] SSL Pet MRI

CSF
SVM

Ethan et al. [43] USL sMRI 3D MRIs 3D CNN
Our work USL sMRI 3D GM 3D Resnet-DsAN block
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no previous studies on MCI transformation prediction using subdomain relations. 
Therefore, the proposed DZTLM has enormous potential for development when subdo-
main relationships are considered. In addition to the studies mentioned above, the rapid 
growth of computing power, especially cloud computing and the Internet of Things 
(IoT)[57–59], is expanding and influencing the healthcare industry. Several prospective 
studies[60–63] predict Alzheimer’s disease using more and earlier data and multimodal 
data. These studies investigate the possibility of artificial intelligence in improving Alz-
heimer’s disease diagnosis.

3  Research model and framework

This section describes the improved Elastic-Mixup, which is capable of performing 
both data augmentation and migration, as well as our proposed DZTLM.

3.1  Elastic‑mixup

Data augmentation is frequently used to generalize the performance of deep models. 
Based on Mixup [64], the Elastic-Mixup module performs sample transformation and 
sample expansion. As indicated in Eq. (1), the Mixup technique generates new samples 
by linear numerical insertion.

where (xi, yi) and (xj, yj) are two randomly selected samples from the source data-
set; � ∈ [0, 1] is the ratio of generated data to selected data; and y is a single heat. 
This technique enlarges the sample space by weighting the sample data and their 
associated class labels simultaneously. Notably, Mixup no longer generates data that 
are labeled with a single class. The loss functions for both classes are recalculated 
throughout the training phase, and the scale factors of the data mixture are used as 
weights, which are then weighted as the final loss.

Instead of ignoring the prior knowledge and expanding the dataset through a uni-
form interpretation of the training data, we modify the Mixup method to give Elastic-
Mixup. As shown in Eq.  (2), the generated data x̄ are the same as in Eq.  (1), but a 
hyperparameter p is added to adjust the displacement of the label ȳ.

 The reason for this modification is that AD and NC data have different distributions 
from pMCI and sMCI data. The ROI distributions for these four categories of data 
are shown in Fig. 2. The AD and pMCI data distributions are more similar than the 
NC and sMCI data distributions. This is because p(AD ∣ pMCI) > p(NC ∣ sMCI) 

(1)
x̄ = 𝜆xi + (1 − 𝜆)xj

ȳ = 𝜆yi + (1 − 𝜆)yj

(2)
ȳ =

1 − sign[𝜆y
i
+ (1 − 𝜆)y

j
− p]

2

+
1 + sign[𝜆y

i
+ (1 − 𝜆)y

j
− p]

2
[𝜆y

i
+ (1 − 𝜆)y
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indicates that pT (x ∣ y) ≠ pS(x ∣ y) . When the parameter p in Eq. (2) is set to 0.8, a 
segmental function of this value generates a data marker. Thus, if the value of this 
parameter is greater than 0.8, it is replaced with 1; otherwise, it remains unchanged. 
The data distributions generated by empirical risk minimization (ERM) [65], Mixup, 
and Elastic-Mixup are shown in Fig.  3. It can be seen that the proposed Elastic-
Mixup method generates the shifted data.

3.2   Model and loss function

To improve the accuracy of MCI conversion classification, the DsAN block is 
used. This is an unsupervised adaptive network that extracts the target and source 
domain data in the feature space to reduce the feature differences. Figure  4 illus-
trates a 50-layer 3D ResNet [16] with attention blocks and an adaptation block. The 

Fig. 2  t-SNE visualizations of the ROIs of pMCI, AD, NC, and sMCI data. ROIs—Regions of interest; 
AD–Alzheimer’s disease; NC—normal control; sMCI—stable mild cognitive impairment; pMCI— pro-
gressive mild cognitive impairment

Fig. 3  Distributions of data generated by ERM, Mixup, and Elastic-Mixup on AD and NC datasets. 
Orange represents the distribution of the AD data; red represents the distribution of the NC data; shaded 
section represents the possibility of AD or NC
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convolutional block attention module [66] is used as a lightweight general attention 
structure to decompose the learning into channel attention learning and spatial atten-
tion learning, which ensures low cost and better performance. Adaptation layers are 
built on DAN [67] and DsAN [14], which apply the local maximum mean differ-
ence (LMMD) through a feedforward network. Equation (3) expresses the specific 
calculation.

DsAN makes a significant contribution by implementing relevant subdomain 
adaptation rather than focusing exclusively on global adaptation. The following loss 
function is used in DsAN:

where D(s) and D(c) denote the source and target domains, respectively; p(c) and q(c) 
denote the distributions of the source and target domains, respectively. The final loss 
function combines the classification loss function J and the domain adaptation loss 
function D, and the parameter � represents the ratio of domain adaptation to classifi-
cation loss. DsAN converts the maximum mean discrepancy (MMD) domain adap-
tation loss to the LMMD domain adaptation loss. The LMMD [14] is calculated as

where xs
i
 and xt

j
 denote instances of the source and target domains, respectively; c 

denotes the number of categories; wisc and wtc
j
 denote the c-th category of the source 

and target domains, respectively; �() is used to map the original sample to the regen-
erative kernel Hilbert space; and dH(p, q) = 0 if p = q.

This study uses AD data, NC data, and their true labels. Moreover, the unlabeled 
MCI data are pre-classified into two subdomains and then pseudo-labeled. To deter-
mine the difference between the source and target domains, the LMMD is calcu-
lated. Samples from the same class will be more closely related after the feedfor-
ward network has been trained for several iterations through backpropagation. The 
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Fig. 4  Architecture of the proposed 3D deep model
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multi-kernel technique can be used to decompose the distance calculation into inner 
products. Additionally, the MMD calculation has a computational complexity of 
O(n2) , which is prohibitively expensive in deep learning; thus, this study uses MK-
MMD unbiased estimation, which reduces the computational complexity to O(n).

4  Experimental design and performance evaluation

This section provides an overview of the data collection and experimental design 
of this study. We then conduct an ablation test to validate the proposed solutions. 
Finally, we compare our method against more sophisticated techniques.

4.1  Data preparation

Experiments were conducted using the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) MRI dataset, obtained from AD, NC, and MCI groups. MCI is classified 
into two types: sMCI (stable mild cognitive impairment without conversion over 36 
months) and pMCI (progressive mild cognitive impairment without conversion over 
36 months). The ADNI dataset was collected and distributed by a nonprofit organi-
zation of the National Institute on Aging (NIA). It contains data related to brain 
disorders, including serial MRI and PET images, clinical and neuropsychological 
assessments, and other biomarkers. The MRI images were preprocessed, including 
skull stripping and alignment, as well as “spatial normalization, masking, and N3 
correction.” Additionally, because GM atrophy is a critical biomarker of early AD 
[68], this study used the CAT12 [69] toolbox to automatically segment the skull to 
obtain GM images with a size of 121 × 145 × 121 voxels. Table 2 summarizes the 
dataset’s characteristics.

4.2  Experimental settings

Our model was written in Python and executed on a computer equipped with a 
Nvidia GTX20080Ti GPU. The batch size of the experiment was set to eight dur-
ing the training phase, and the ADAM optimization algorithm was used. After 100 
epochs of training, the model reached a stable convergence point after 45 epochs. 
To evaluate the model’s performance, we used the accuracy (Acc), specificity (Spe), 
and the area under the receiver operating characteristic (ROC) curve (AUC). The 

Table 2  The characteristics of 
the NIA dataset

NC—normal cohort; AD—people with Alzheimer’s disease; 
pMCI—progressive mild cognitive impairment; sMCI—stable mild 
cognitive impairment

Subject AD NC pMCI sMCI

Number of subjects 200 229 164 100
Gender (Male/Female) 103/97 118/111 97/67 66/34
Age range 55-91 59-90 55-89 57-90
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ROC curve was constructed using the false positive rate as the abscissa and the true 
positive rate as the ordinate values. The variables TP, TN, FP, and FN in Eq.  (5) 
denote the numbers of true positives, true negatives, false positives, and false nega-
tives, respectively. The sensitivity (Sen) and Spe correspond to the prediction accu-
racy of sMCI and pMCI, respectively, because sMCI is represented by positive val-
ues and pMCI is represented by negative values in our experiments.

4.3  Results

We conducted ablation experiments to determine the effect of the data strategy, 
backbone selection, and DsAN modules in the model on MCI diagnostic perfor-
mance. In addition, our approach was compared against existing state-of-the-art 
methods. The model was fed a preprocessed 3D GM image, and the experimental 
results were averaged over ten rounds of fivefold cross-validation.

4.3.1  Ablation experiment results

We first examine the example strategy. The basic 3D-ResNet classification model 
was trained using AD/NC data to predict the MCI transformation. This experiment 
compared four techniques: direct usage of AD and NC, regular rotation and scal-
ing, Mixup, and Elastic-Mixup. Table  3 summarizes the results of the four train-
ing procedures. As can be observed, despite the fact that we set very modest values 
for the distortion amplitude at the conclusion of the process, rotation and scaling 
of the 3D images fail owing to the limited data, which introduces additional noise. 
The Elastic-Mixup algorithm somewhat enhances the model’s prediction accuracy 
and generalizability. Additionally, it gives a Sen score that is 7% higher than that of 
Mixup, demonstrating a considerable increase in the rate of pMCI detection. The 
hyperparameter p in Eq. (2) affects the final outcomes, with experimental evidence 
indicating that setting p = 0.8 yields the best results.

(5)

Acc =
TP + TN

TP + TN + FP + FN

Sen =
TP

TP + FN

Spe =
TN

TN + FP

Table 3  Comparison results of 
augmentation methods

Acc, Accuracy; Sen, Sensitivity; Spe, Specificity

Augmentation method ACC% Sen% Spe% Acu

No data augmentation 82.45 54.72 92.27 0.74
Scaling and rotation 62 50.28 65.88 0.65
Mixup 83.25 61.39 92.51 0.78
Elastic-mixup 85.77 71.78 91.43 0.82
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We also examined the effects of using Elastic-Mixup in the data and feature 
spaces. Figure  5 illustrates the results when Elastic-Mixup was used in several 
places, including the input layer, hidden layer, and fully connected layer. The 
results show that the optimal performance was achieved when Elastic-Mixup was 
used in the original input layer. As a result, Elastic-Mixup was exclusively used 
in the input layer in subsequent experiments.

We compared three 3D model structures: ResNet, ResNet-DAN, and ResNet-
DsAN. All models in this experiment used the Elastic-Mixup technique. Accord-
ing to Table 4, DsAN does not improve the diagnostic performance significantly. 
The effects of changing the p value of Elastic-mixup on the 3D ResNet-DsAN 
and ResNet models are depicted in Fig. 6. The red line represents the 3D ResNet 
results, while the blue line represents 3D ResNet-DsAN results. The red line is 

Fig. 5  Sen and Spe scores when using Elastic-mixup in different positions of the deep model

Table 4  Comparison results of 
the three advanced 3D networks

Network Acc% Sen% Spe% ACU 

Resnet-50 82.45 54.72 92.27 0.74
Resnet-DAN 81.24 58.11 90.13 0.72
Resnet-DsAN 85.16 64.13 93.13 0.78

Fig. 6  Trend of accuracy with respect to the Elastic-mixup parameter p for 3D ResNet (red) and ResNet-
DsAN (blue). Note that this is only the result of one fold of the data
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steeper than the blue line, implying that combining the two methods results in 
more consistent network diagnostic performance.

Next, ablation experiments were conducted to investigate the effects of the train-
ing data, augmentation strategy, and network structure on the prediction results. 
From the results presented in Table 5, the following observations can be made: (1) 
MCI prediction trained on the original AD and NC data obtains the lowest predic-
tion accuracy. (2) The application of the fine-tuning method to the labeled MCI data 
improves the accuracy slightly, which is consistent with previous results [43]. The 
most obvious difference is that Sen outperforms Spe. This may be related to the 
fact that the distributions of NC and sMCI data are different from those of AD and 
pMCI data. Additionally, superior performance is achieved by applying fine-tuning 
to the last layer rather than the hidden layer, so only the fine-tuning results for the 
last layer are presented here. (3) Training can be performed directly using labeled 
MCI data, but the results depend on the quality and quantity of the labels. A lack of 
training data often results in large standard deviations and may cause network over-
fitting. (4) The proposed Elastic-Mixup method leads to significantly better predic-
tion results, particularly in terms of Sen. This may be because the method changes 
the distribution of the difference. Consequently, the effectiveness of the proposed 
method and the improved network when Elastic-Mixup and DsAN are combined has 
been validated.

4.3.2  Comparison with several state‑of‑the‑art methods

Finally, the proposed approach was compared with several methods that also use 
MRI, as listed below.

(1) A modified version of the 3D ResNet framework [34]. (2) A 3D CNN with 
age correction [28]. (3) A 3D-CNN-SVM classifier trained on MCI [30]. (4) A 2D 
VGG model pertained on ImageNet and using standard augmentation techniques 

Table 5  Ablation experiment results

a SL, Supervised learning; SSL, Semisupervised learning; USL, Unsupervised learning
b ZL, Zero-shot learning; ZTL, Zero-shot transfer learning

No Learning 
appoach

Training data Model Augmentation Acc% Sen% Spe% Acu

1 SL Labled sMC 
pMCI

3D-Resnet No 68.68 54.99 82.12 0.66

2 SL llabled AD,NC
labled sMC 

pMCI

3D-Resnet No 70.22% 54.28 83.2 0.68

3 SSL(Finetune) labled AD,NC
labled sMC 

pMCI

3D-Resnet No 82.45 54.72 92.27 0.74

4 USL(ZL) labeled AD NC 3D-Resnet Elastic-MIxup 85.77 71.78 91.43 0.82

5 USL(ZTL) (labeled AD, 
NC

3D-Resnet-
DsAN

Elastic-Mixup 87.16 78.11 92.40 0.85
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[44]. (5) A CAE with parameters learned from AD and NC data using unsupervised 
learning techniques, then fine-tuned on pMCI and sMCI data [49]. (6) ResNet29, 
which was established by shrinking and shortening the model built in advance on 
AD and NC data [47]. (7) A modified version of 3D ResNet that uses neighborhood 
relations trained on AD and NC data [48]. (8) A collection of 2D CNNs pretrained 
on generic images such as AlexNet, GoogleNet, ResNet, and Inception-v3 [56]. 
(9) A zero-shot learning model based on a sequential CNN that only uses the total 
weights from the NC-AD classification [43].

In Table 6, the worst performance is given by method (3). This is because the 
whole brain images contain too much noise and the direct training dataset is rela-
tively small. Similar results are obtained for methods (4) and (7), because both 
use GM as features and apply migration techniques. The accuracy of the proposed 
DZTLM reaches 87%, which is an improvement of nearly 5% over the next-best 
method. The DZTLM also achieves the best Sen and Spe scores. An important rea-
son for this is the use of the sample transfer technique instead of fine-tuning.

4.4  Discussion

Our study began by comparing the predictive ability of several classical deep back-
bones for MCI conversion using MRI data. The baseline dataset included individuals 
with AD, NC, pMCI, and sMCI. The validation trials demonstrated that several deep 
neural architectures perform similarly. Although DenseNet is better than ResNet in 
terms of performance, we chose ResNet as the backbone due to its straightforward 

Table 6  Comparison with the state-of-art methods for MCI classification

(1) (2) (3) are supervised learning. (4) (5) (6) (7) are semi-supervised learning methods that use the fine-
tuning technique, with (4) (5) using general images as the source domain and (6) (7) using AD and CN. 
(8) is unsupervised with a fine-tuning technique, using AD and NC as source domains. (9) is unsuper-
vised learning

Model Training data Input Acc% Sen% Spe%

(1) Improved 3D ResNet Labeled MCI Hippocampal MRI 75 77.8 81.3
(2) 3D CNN MCI Whole brain MRI 79.50 68.80 86.10
(3) 3D CNN-SVM MCI Whole brain MRI 62.00 64.40 68
(4) 2D VGG Imagnet The gray matter (GM) tissue 83.75 82.0 85.13
(5) Assembled 2D CNN General image

MCI
Grey matter MRI 70.1 65.35 72.22

(6) 3D ResNet29 t Labeled ADvsNC
Labeled MCI

Whole brain MRI 82.4 72 83.56

(7) 3D modified ResNet ADvsNC
LabeledMCI

Gray matter MRI 83 82.0 85.13

(8) 3D ICAE(Tl) Unlabled ADvsNC
Labeled MCI

Whole brain MRI 73.95 70.71 77.46

9) Sequential 3D CNN AD vsNC The entire MRI volumes 74.2 68.2 72.3
Proposed method Labeled ADvsNC

Unlabeled MCI
Grey matter MRI 87.16 78.11 92.40
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structure and low memory consumption. Additionally, an ablation experiment dem-
onstrated the critical role of the data approach in increasing the prediction accuracy.

This proposed method uses the Elastic-Mixup data transfer strategy for unsu-
pervised zero-shot scenery learning. As most existing research is based on semi-
supervised or supervised learning, traditional data augmentation techniques such as 
rotation, scaling, or the original Mixup are prevalent. However, the rotation angle 
and scale ratio of 3D images significantly affect their performance. Additionally, 
data distortion may impair the detection of clues in diseased brain regions. Although 
Mixup enhances the performance of supervised and unsupervised learning, our 
experiments demonstrated that Elastic-Mixup predicts MCI more accurately when 
only using AD and NC data.

Numerous existing deep models are pretrained on ImageNet or AD and NC data, 
with the final layers tuned using a small amount of labeled MCI data. By utilizing 
Elastic-Mixup, the proposed DZTLM outperformed most previous semi-supervised 
approaches. This is consistent with previous results [49]. Possible explanations 
include disguised AD and NC characteristics containing more clues and more stabil-
ity than MCI characteristics. The fine-tuning technique transfers features by shar-
ing part layers and adjusting the final layer of each part. Inspired by the concept 
of feature transfer, we placed Elastic-Mixup in several different feature layers. The 
results indicated that Elastic-Mixup performed better on data than on feature lay-
ers. As a result, we hypothesize that the performance of feature learning with sparse 
data is unstable. This is the first time, to our knowledge, that DsAN has been used 
to analyze MRI data for the MCI task. The DsAN module determines the differ-
ence between the source and the target using the LMMD. As with the fine-tuning 
technique, relying solely on DsAN results in less marginal improvement than using 
data transfer. However, research indicates that DsAN minimizes the accuracy bias 
across many parameter values. As stated previously, the hyperparameter reflects a 
hypothesis about the relationship between the source and target data. Due to its low 
generalization error, DsAN learns effectively on the final few layers. Our findings 
demonstrate that, even in the absence of labeled MCI data, the proposed model con-
sistently performs well when representing target and source data.

This work has inherent limitations that could be investigated further in the 
future. First, we performed the MCI transformation prediction using only the 
MRI data from the ADNI collection. The size of this dataset is restricted, and 
the single-image patterns and the test set are insufficiently diverse. Despite using 
normalization and reducing the model’s complexity, there is still a risk of over-
fitting. Naturally, fusing additional modalities with larger datasets will improve 
the MCI diagnostic performance. Second, the data transfer suggested here makes 
use of the Elastic-Mixup hyperparameter. This hyperparameter is determined by 
the data transfer threshold between AD and NC. The grid search method could 
be used to determine the best value. However, there is no guarantee of obtain-
ing the optimal parameter combination, and the iteration process requires time. 
Hence, future research will attempt to automate the parameter learning. Finally, 
the visualization model communicates the model’s findings and assists in identi-
fying locations with disease lesions. Because our data contain information about 
the entire brain without significant structural deformation, visualizing the model 
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may allow critical clues to be identified from MRI. Additionally, the visualization 
of data and models serves as a guide for our future work.

5  Conclusion

In this study, we used unsupervised learning to create a unique 3D-ResNet-
DsAN-based DZTLM, while improving traditional data augmentation and incor-
porating sample migration. The study’s findings are therapeutically noteworthy 
because, among other things, MCI training data are severely inadequate due to 
patient privacy problems, racial differences, illness features, and annotation reli-
ability. Moreover, our method is novel in that it integrates data and model transfer 
techniques. Additionally, the suggested model and approach investigate the same 
subdomain distribution.

The experimental results presented in this paper show that the DsAN mod-
ule and the Elastic-Mixup data scaling method improve the MCI conversion 
prediction performance. Elastic-Mixup makes a greater contribution to this 
improvement than DsAN, significantly boosting the ability to detect sMCI. 
The combination of the two leads to improved diagnostic accuracy and robust-
ness. Interestingly, comparison testing showed that utilizing a 3D-ResNet-based 
supervised learning model enhances accuracy by about 18% and that the lack of 
labeled data does not produce inferior performance to existing approaches. How-
ever, there is a risk of overfitting due to data shortages. In future work, we hope 
to increase the generality of our model and apply it to various illnesses.
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